Small deformations of polygons
نویسنده
چکیده
We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a vector-valued quadratic invariant b on the space of those isometric deformations which, for convex polygons, has a remarkable positivity property. We give two geometric applications. The first is an isoperimetric statement for hyperbolic polygons: among the convex hyperbolic polygons with given edge lengths, there is a unique polygon with vertices on a circle, a horocycle, or on one connected component of the space of points at constant distance from a geodesic, and it has maximal area. The second application is a new proof of the infinitesimal rigidity of convex polyhedra in the Euclidean space, and a new rigidity result for polyhedral surfaces in the Minkowski space. Finally we indicate how the invariant b can be used to define natural metrics on the space of convex spherical (or hyperbolic) polygons with fixed edge lengths. Those metrics are related to known (and interesting) metrics on the space of convex polygons with given angles in the plane. Résumé On décrit les déformations infinitésimales des angles d’un polygone euclidien, sphérique ou hyperbolique sous les déformations infinitésimales qui préservent les longueurs des arêtes. On en déduit la définition d’un invariant quadratique à valeurs vectorielles b sur l’espace de ces déformations isométriques qui, pour les polygones convexes, a une propriété remarquable de positivité. On donne deux applications géométriques. La première est un énoncé isoperimétrique pour les polygones hyperboliques: parmi les polygones hyperboliques convexes dont les longueurs des arêtes sont données, il existe un unique élément dont les sommets sont sur un cercle, un horocycle, ou dans une composante connexe de l’ensemble des points à distance constante d’une droite, et son aire est maximale. La seconde application est une nouvelle preuve de la rigidité infinitésimale des polyèdres euclidiens, et un nouveau résultat de rigidité pour les surfaces polyèdrales dans l’espace de Minkowski. Finalement on indique comment l’invariant b peut être utilisé pour définir des métriques naturelles sur l’espace des polygones convexes sphériques (ou hyperboliques) dont les longueurs des cotés sont fixés. Ces métriques sont reliées à des métriques connues, et intŕessantes, sur les espaces de polygones euclidiens convexes dont les angles sont fixés.
منابع مشابه
Small deformations of polygons and polyhedra
We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a quadratic invariant on the space of first-order deformations of a polygon. For convex polygons, this quadratic invariant has a positivity property, leading to a new proof of t...
متن کاملA Modification on Applied Element Method for Linear Analysis of Structures in the Range of Small and Large Deformations Based on Energy Concept
In this paper, the formulation of a modified applied element method for linear analysis of structures in the range of small and large deformations is expressed. To calculate deformations in the structure, the minimum total potential energy principle is used. This method estimates the linear behavior of the structure in the range of small and large deformations, with a very good accuracy and low...
متن کاملIslamic star patterns from polygons in contact
We present a simple method for rendering Islamic star patterns based on Hankin’s “polygons-in-contact” technique. The method builds star patterns from a tiling of the plane and a small number of intuitive parameters. We show how this method can be adapted to construct Islamic designs reminiscent of Huff’s parquet deformations. Finally, we introduce a geometric transformation on tilings that exp...
متن کاملModeling of contact deformations between a synthetic human and its environment
In the absence of contact, several solutions have been proposed for skin deformations. In his hand animation system MOP, Catmull proposed a hand envelop made up of polygons in 1972 (5), spheres and B-splines were proposed by Badler and Morris in 1981 for hand deformations (6), Bézier surfaces were used by Komatsu for arm deformations (7), Magnenat-Thalmann et al. (8) used operators which are ad...
متن کاملPolygon Morphing Using a M ultiresolution Representation
We present an algorithm for morphing between two simple polygons . The two polygons are converted to mul tiresolu tion representations. Intermediate representations are generated from these two, from which intermediate polygons are reconstructed. Our algorit.hm is simpler than the few existing polygon morphing schemes, and its results compare favorably. The key to the success of our algorithm i...
متن کامل